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Abltract-The new plastic (elastoplastic) constitutive equation with vertex effect which was
proposed and developed in the previous papers is applied to prediction of the forming limit
strains of metal sheets which are subjected to various nonproportionalloading without unloading
and to proportional loading after another proportional loading with or without unloading, It is
demonstrated that the constitutive equation is very effective, that appropriately curved strain­
paths give much larger limiting strains than the corresponding straight paths do, that abrupt
change in stress- or strain-path very often induces a catastrophic breakage at the instant of the
'path-change, and that very useful secondary FLDs (forming limit diagrams) can be drawn,

INTRODUCTION

In Parts I and II of this series of work[l, 2], a new type of plastic constitutive equations
with vertex effect and its extension to more general inelastic constitutive equations
were proposed, and discussions on them were presented. And in Part III[3], its simplest
form was applied to calculation of FLDs (forming limit diagrams) of metal sheets sub­
jected to proportional loadings.

In this paper the same type of constitutive equation as that used in Part III is
applied to predict forming limit strains of metal sheets which are deformed along ar­
bitrarily curved strain-paths without unloading, and deformed along straight strain-path
after another straight strain-path, with or without unloading at the strain-path change.
The localized bifurcation condition due to StOren and Rice[4] is used as the breakage
condition of the sheets. Chu[5] presented discussions similar to some portion of ours
on the base of Jrcorner theory due to Christoffersen and Hutchinson[6]. Here our
attention is payed on far more extensive strain-paths in order to obtain more positive
and practical informations on the forming limit strains of the metal sheets, and to
confirm the effectiveness of our plastic constitutive equation on the subject.

2. BASIC EQUATIONS

The constitutive equation used here is written as follows[1-3]:

de = dee + del' = (l/2G*) dT + (P(8»)(b/2O:ho)T drr,

where

de = dE - (1/3)(tr dE)1,
1/G* = 1/G + (P)IHo ,

T = u - (1/3)(tr u)1,
dT = dT - dooT + T doo,

rr V372(tr T 2 )1/2,

drr = V372(tr dT2) 1/2 =I' dO:,
ho = (1/3) drr/deP for proportional loading,

deP = V2!3(tr dEP2) 1/2,
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and dE = strain increment, <J = Cauchy stress, and the superfixes e and p denote
elasticity and plasticity, respectively. And 1 = unity tensor of second rank, G = elastic
shear rigidity modulus, and the symbol tr denotes the trace operator. dw = increment
of rigid-body rotation. ho and H o denote the instantaneous work-hardening rate and the
instantaneous vertex-hardening rate for proportional loading, respectively. And,

b 1 - a,

P(8) a + b cos 8,

(P) = P for P > 0,

= °for P ~ 0,

a = hoiHo = cos 8 0 /(1 + cos 8 0 ),

where the angle 8 denotes that between T and cIT in the five-dimensional deviatoric
stress space due to Illushin[7], and is defined by the following relation:

Here we assume plastic deformation to be incompressible. Then we have the following
relation between the increments of volume-strain and hydrostatic stress:

tr de = (1/3K)(tr d<J), (2)

where K = elastic bulk modulus.
One of the characteristic aspects of the constitutive equation (1) is that it allows

a pointed vertex to evolve at the loading point on the subsequent loading surface as
far as Ho remains finite, and at this point it is essentially different from the classical
plastic potential theory. In this case, it is natural to think that the vertex will develop
with plastic deformation, for the initial yield surface should be considered to be gen­
erally smooth at the initial yield point for arbitrary loading. (Note that even for a Tresca
material the yield surface is smooth except at particular points on it.) The angle 8 0 in
eqn (1) denotes the half angle of the point-wise vertexed loading surface cone in the
five-dimensional deviatoric stress space. Therefore, it can be formulated most simply
as follows:

(3)

where p is the newly introduced material constant which governs the rate of evolution
of the pointed vertex. If p always remains equal to °with plastic deformation, then no
vertex forms on the loading surface and the constitutive equation (1) reduces to the
classical J 2-flow theory, which corresponds to the case where H o always remains in­
finite.

Another characteristic aspect of our constitutive equation (1) is that it uses not
only the usual strain-history measure dE which is defined as

but also the stress-history measure da defined above which is different from the in­
crement of Mises equivalent stress a which is written as follows:

dO' = (3120') tr(T dT).

As discussed in PaI!.!, the function P(8) can be rather easily formulated by virtue of
the introduction of da and is described above. Moreover, our constitutive equation (1)
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can be easily extended to more general types of inelasticity, or to that for the case
where arbitrary initial and subsequent anisotropy plays an important role (see Part I).
These aspects are totally different from h-corner theory due to Christoffersen and
Hutchinson[6].

The expression (1) is convenient for the case where the stress-path is controlled.
The inverse expression of it is needed for the case where the strain-path is controlled,
and is written as follows:

dT = 2G*[de - (P)(3bI2Ci)(hlho)T de],

hlho = [CI + 2CICz cos 8 + C~] -I/Z, (4)

C I = 'Y + a(P), 'Y = ho/G, Cz = b(P).

When the strain-path is controlled, de and de are given and thus the angle e between
de and T is also known, where

cos e = tr(T de)/[(tr TZ)(tr deZ)] I/Z.

And we have the following relation between cos e and cos 8:

(5)

This can be rather easily solved with respect to cos 8 by a direct numerical method.
[Or, as described in the Part II, if nonproportionality of the strain-path is not very
severe in a numerical analysis of large deformation by incremental method (say), we
may use the value of cos e at one step earlier as its good approximation without solving
eqn (5) at every step of deformation, although in all the numerical examples given
below, the direct solution of eqn (5) is used in order to keep good accuracy of calcu­
lation.]

The condition for continuity of plastic deformation for next dT in the expression
(1) is given as

and that for next de in the expression (4) is given as

where

8 max = cos- I(- alb) ~ Tr/2,

8 0 = Tr - 8 max .

Here we concern ourselves with thin sheets. Therefore the constitutive equation
(1) or (4) is reduced to its special form of plane stress state, though its detail is omitted
here.

Now let us consider an element ofthin sheet (see Fig. 1). In Fig. 1, (J'I is the major

0,<== ==00,
-1----~~-'------j""a,-1

Fig. 1. A thin sheet element under biaxial loading.
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principal stress and is assumed to be positive. As for the total principal strains El and
Ez, we consider deformation within the range of I El I~ I Ez Iand El > 0. The dimension
of the length of the sides al and az may be arbitrary, and this element can be thought
to be either a macroscopic thin plate undergoing uniform deformation or a small element
within a large thin sheet undergoing not very severely nonuniform deformation. Of
course, in the latter case, the dimension of the element should be large enough to use
the assumption of plane stress state.

Therefore the element is assumed to deform with straight sides due to some con­
straint, and thus the state of stress and strain is uniform until a localized neck band (a
kind of bifurcation of local type which was first discussed in detail and used as a
breakage condition by Storen and Rice[4]) takes place, as illustrated in Fig. I, and the
sheet breaks. [Of course, for symmetry, two such bands in a cross manner could form
at the same time, though one of them usually predominates because of very slight
heterogeneity of the actual material property.] As is well known, a localized necking
is accompanied with very severe thinning within a very localized area of narrow band
whose width is comparable to the thickness of the sheet. Thus the condition of the
onset of this type of bifurcation is justified to use as the condition of breakage of the
thin sheet undergoing uniform deformation or of breakage at a point on a large-scale
thin sheet undergoing not very severely nonuniform deformation. For this reason, check
of the onset of another type of bifurcation (the so-called diffuse necking) is omitted
here, because our attention is payed exclusively to breakage phenomenon of the sheet.

Let us consider the instant at which an incipient localized neck band has appeared,
as illustrated in Fig. I. It is the band along which discontinuities in distributions of
stress-increment and of gradient of displacement-increment exist, and whose width is
comparable with the sheet thickness. Then, following the similar procedure used in the
previous Part III by use of our constitutive equation, the equilibrium equation across
the band and so forth, we obtain the following fourth-order algebraic equation with
respect to gl and gz, where the vector g(g" gz) represents the unit normal to the band.
Here, for simplicity, we keep TIZ and 1'lz equal to °outside of the band, both of which
are externally controlled:

Ag1 + Cgrg~ + Eg~ = 0, (6)

These are formally similar to the corresponding equations in Part III. However, the
coefficients all - a33 are dependent not only on the stress ratio m = rrz/rr, and the
strain ratio a = EZ/E] , but also on the stress-increment ratio m' = C!rrz/C!rrl or the strain­
increment ratio a' = dEz/dE], all of which have to be estimated at every step of in­
cremental calculation, because here we concern ourselves with arbitrarily nonpropor­
tional deformation. They are expressed by the following equations:

all (lID*)[(1I3G*) + (l/12hoHbmdM)Z + (K/12ho)ab(4m'm, + m3)/(MM')],

azz (l/D*)[(l/3G*) + (l/12hoHbmz/M)Z + (K/12ho)ab(4m] + m'm4)/(MM')],

al2 (l1D*)[(l/6G*) (l/12ho)m]mz(b/M)z + (K/12ho)ab(2m'ml - m4)/(MM')],

aZl (lID*)[(l/6G*) (1I12ho)mzm](b/M)Z + (K/12ho)ab(2mz - m'm3)/(MM')],

a33 l/[(l/G*) + (Kl2ho)ab(mz + m'md/(MM')],

D* (1112)[(l/G*)Z + (l/hoG*)b Z] + (Mab/4M' ho)[(l/G*) + (b z/3ho)]

+ (l/6h5HMab/M' f ,
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where

1153

I1G* = (1/G) + (a/Ho), ml = 2m - 1, m2 = 2 - m,

m3 = 5 4m, m4 = 5m - 4, K = (sign of <TIl),

M' = (1

[If TI2 and 1- 12 are not equal to 0 at the time under consideration, the equation corre­
sponding to eqn (6) takes the following form:

(7)

and the coefficients A ~ E take more complex expressions.]
In the eqns (6) and (7), the characteristics of material work-hardening has its effect

through ho, and therefore both of them are valid, irrespective of the type of work­
hardening. For example, when the work-hardening property is expressed by the fol­
lowing equation

(for proportional loading), (8)

ho is given by the following expression:

ho = (1/3)[(nole) + 13f.L0'], (9)

where n = strain-hardening exponent (or the so-called n-value), f.L = strain-rate sen­
sitivity exponent, c = plastic modulus, and

13 = d(ln e)/de

is called the strain-rate path coefficient which expresses the effect of strain-rate history.
By making use of eqns (8) and (9), we can discuss about even the case where the
material is of strain-rate dependence in a sense of natural time. Nevertheless, we con­
cern here ourselves exclusively with the case of f.L = 0, i.e. n-th power hardening
materials without viscous effect, because such materials are commercially most com­
mon except for a certain kind of particularly functionalized materials such as super­
plastic metals.

The algebraic fourth-order eqn (6) possesses real roots when

A = 0, or c ~ -2vAE (10)

holds, and at the instant where it first captures any real root a localized neck appears
and the sheet breaks. Namely, the breakage condition is given as follows:

A = 0, or C = -2vAE. (11)

The angle l\J between the I-axis and the unit normal g to the localized necking band is
given as follows:

l\J = 0 (for A = 0), or (12)

As described in Part III, for proportional loading, the critical condition (11) can
be solved analytically in a closed form with respect to the critical major strain (EI)cr
in terms of nand m or a. However, for arbitrarily nonproportionalloading (or straining),
it has to be solved numerically. Namely, the sheet element is deformed incrementally
with appropriately small increment at every step of deformation, and the coefficients
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a II ~ a33, and so forth, are evaluated to check the critical condition (II) or the change
of the sign of A and C + 2vAE. The computer program for this purpose is made,
which can also be used in a program for numerical analysis of plastic deformation of
metal sheets as a subroutine to check when and where they break.

The numerical examples given below are mainly for the material of n = 0.333 and
p = 0.922, which corresponds to a kind of aluminium-killed steel, and the theoretical
FLD for proportional loadings with this value of p is confirmed to agree very well with
the experiment. For simplicity and for a common aspect of scattering experimental
data in breakage phenomenon, we assume the material to be isotropic, though sheet
material usually shows planar and normal anisotropy (see, e.g. Part III).

For all numerical calculations here, the computer Facom M-2DD at Nagoya Uni­
versity Computation Center is used.

3. NUMERICAL RESULTS AND DISCUSSIONS

3.1 Nonproportional straining without unloading
Figure 2 illustrates a lot of examples of limiting strain for various curved strain­

paths. The increment of equivalent strain for one step of calculation is taken as dE =

0.005. In the figure, the solid bold curve shows the FLD for proportional loadings
(prop. FLD). The small letter 2 implies ljJ = 0, i.e. the localized neck band is perpen­
dicular to the I-axis. From this figure, we find the following noticeable facts:

(1) A slight deviation of strain-path from a straight line (proportional loading)
causes a fairly pronounced change in the limiting strain.

(2) An appropriately chosen curved strain-path gives a far greater limiting strain
than that for the corresponding straight strain-path. Or, on the contrary, a badly chosen
curved strain-path could cause a far smaller limiting strain.

The statement (1) seems to have to do with the fact that the experimental data of
limiting strain are usually apt to scatter even for proportional loadings, because the
control of strain-path is scarcely perfect (see Part III). On the other hand, the fact
stated in (2) above can be applied effectively in the practical press-forming of metal
sheets.

Next, let us consider the FLD for the case where the straight stress- or strain­
path is abruptly changed to another straight one without unloading at the path change.
When the stress-path is controlled, the strain-path after the path change is not straight
and thus less severe change is caused with respect to strain-path than that in strain­
path control case. But, of course, in both cases the directions of the stress- and strain­
increments are abruptly changed at the path change. Therefore the calculation im-

K.S.

~J Strain path

0.6

( 2·-4J=01

0.40.2
---.----.--.-----r--.------:I--,.---,.---,.---.--E2

-0.4 -0.2 0

Fig. 2. Examples of limiting strain for various curved strain-paths.
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K.S.

0.4

Type of breakage

{
1..·lj!* 0
2·.. lj!=O

0.2

"-

-~~y
2 ' prop. FLO

0.6;-.
9 m'

£1- 0-,
\. "'-,I

\ 1
- __--Strain ,,\ 2

path \\ \ I
\\1 \

.····.Points where .~\ \

m' is changed ~I
(No unloading) .

-0.2

Fig. 3. Examples of FLD for stress-paths with an abrupt change in direction (m' = 0 -'> 1 and
1 -'> 0; without unloading).

mediately after the path change should be performed with the finest of care. Here the
increment of the equivalent strain at the steps after the path change is chosen as de :;::;;
0.0001 up to E :;::;; 0.02 and then gradually increased to de :;::;; 0.005. All calculation is
performed in double-precision.

Figures 3 and 4 illustrate the FLDs for the case of stress-path control. Figure 3 is
for the case of m' :;::;; 1 - 0 and 0 - 1, and Fig. 4 is for m' :;::;; 1 - -1 and -1 - 1.
The curved broken lines in them show the strain-paths (prop. FLD is also inserted).
The small letters 1 and 2 imply the direction of localized neck band by the angle I\J =F
oand:;::;; 0, respectively. From these figures we find the following interesting facts:

(1) When the degree of deformation along the first proportional loading does not
exceed a certain amount, the limiting strain for the second stress-path increases beyond
that for the corresponding proportional loading (i.e. beyond prop. FLD). However,
when it does, the statement becomes converse.

(2) When the degree of deformation along the first proportional loading exceeds
a certain amount greater than that in (1) above, the sheet breaks almost immediately
after or at the instant of the path change. The statement (2) implies that an abrupt

£1

0.4

[
1......1jJ~0
2---1jl =0

K.S.

0.2

"­

_----.~,i/
prop. FLO

-0.2-0.4

m'

-~,
..../ /' '\ \ \ ' ...
~.'~ \

\ \
1 \ \ \''''-. \ \ \

\ \

"'-, \ 2 \

"'-. 1

"'- \ \ I. \ \ \l I \\ .
1 ~\ \ (\ \ \,/

___ j ....Strain path ~ \ \ \ O.~ \ 'zy1" m'=~/Ol
~ \ \ 1\ \ J /

~ \ \ \ \ .
...··Points where m'is '..;\ \f \ 1,/

changed (No unloading) '" 1\ 1.1'
, I

Fig. 4. Examples of FLD for stress-paths with an abrupt change in direction (m' = 1 -'> -1
and 1 -'> 1; without unloading).
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\
/

~

Killed SteeL

0.6

o· ..Points at
breakage

e·_· Points at
abrupt change of
strain path with
no un loading

prop. FLO

0.3 0.2 0.1 o 0.2 0.4

Fig. 5. Examples of FLD for strain-paths with an abrupt change in direction (a' = - 0.5 ..... I
and 1 ..... -0.5; without unloading).

change in stress-path may cause a catastrophic breakage of the sheet and thus should
be avoided in press-working process.

Figure 5 illustrates the FLD for the case of strain-path control in which ex / = 1~
- 0.5 and - 0.5~ 1 are chosen. From this figure we find that the range of strain along
the first proportional loading in which a catastrophic breakage of the sheet at the instant
of the path change occurs is wider than that for the stress-control case. This is of course
due to the fact that the degree of the state change is greater in the strain-control case
than in the stress-control case.

The author once discussed about the effect of abrupt change of external condition
on fracture of materials from a totally different point of view[8]. These results here
give a kind of conclusion to the same subject from the viewpoint of bifurcation theory.

3.2 Secondary FLD
This is the FLD for the case of a proportional loading~ unloading~ the second

proportional loading, i.e. FLD of prestrained metal sheets. This has its significance in
press-forming of metal sheets which requires multistages of processes.

In the past, the secondary FLD has been mainly investigated by experiments es­
pecially in Japan[9]. And it is known that the secondary FLD for the case of ex = - 0.5

K.S. £1
•• a'=-O.S-l_---r--_

0.4 £20.2

o &: \ A
/'&-

1'/

wi,/': RD.
T.D.

,/ A 4S·

0.4

0.6 •

-0.2-0.4

Fig. 6. Examples of the secondary FLD for the case of a' = - 0.5 ;:z 1for a kind of aluminium­
killed steel sheet (experiment).
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(uniaxial tension) - unloading - (X' = 1is the highest one and that for (X = 1(equibiaxial
tension) - unloading - a' = - 0.5 is the lowest one. They are called as the maximum
and minimum forming limit diagrams, respectively. However, investigation on the sec­
ondary FLD is still very few. Other types of maximum and minimum FLDs could exist.

In the author's laboratory, we have also obtained experimental secondary FLDs
of a few kinds of commercial metal sheets with respect to the case (x' = - 0.5 ~ 1.
One of them is illustrated in Fig. 6 which is that of a kind of aluminium-killed steel
plotted as the average curve of the three secondary FLDs for 0°, 45° and 90° to the
rolling direction. From this figure, it is confirmed that the secondary FLD for a =

- 0.5 - unloading - (x' = I is very high, and that for a = 1 - unloading - (x' =
-0.5 is very low. Particularly, in the latter, we find that deformation beyond a certain
rather small strain along equibiaxial tensile strain-path exhausts the material ductility
completely and the sheet breaks with no extension along the second strain-path of
simple tension. This is rather similar to Figs. 3 and 5, though the latter figures are
theoretical ones and, moreover, intermediate unloading is not allowed in them.

The constitutive equation (1) is based on the assumption that the subsequent yield
surface in the deviatoric stress space is the Mises' super-sphere, except its portion of
vertexed-cone due to vertex-hardening. This idealization is reliable as far as unloading
is not involved during deformation. However, when unloading is given and reloading
takes place along different stress- or strain-path from that of preloading, as in the
secondary FLDs, it yields uncertainty; especially in strain-hardening characteristics in
reloading process, which gives inconvenience in comparison of the theory with the
corresponding experiments, because it is well known that the subsequent yield surface
of the actual materials never takes that of Mises' type, and it changes its shape and
its center moves with plastic deformation due to preloading. However, at present, the
rule of subsequent hardening has not yet been established. Therefore, here we adopt
the following rather simplified procedure which may be available only for the secondary
FLDs. Namely, we introduce the following assumptions about the strain-hardening
exponent n(2) and the half angle eo of the vertexed-cone along the second straight strain­
path. First, for n(2), we use the following two formulas:

(i) n(2)

(ii) n(2)

n, (13)

(14)

where Ea = E at the end of the first proportional loading, and E~~ = the limiting equiv­
alent strain when the sheet is deformed along the first proportional loading only. And
6* denotes the angle which expresses the severity of the path-change from the first to
the second strain-path, and is evaluated by the following expression which is based on
the fact that the direction of deviatoric stress tensor in the deviatoric stress space is
represented by its third-order invariant IIh:

6i = cos-I(IIh(i),

IIh = IIh/(IIh)m=o,

(15)

(16)

(17)

where i = 1 or 2 and it denotes the first or second proportional loading, respectively.
As easily checked, (IIh)m=o = (2/27)1J"1. For example, the values of IIh defined by
eqn (16) for a few cases are given as follows:

{

I a = -0.5 (m = 0),
o a = - 1 (m = -I),

= 0 (m = 0.5),
-I ... a = 1 (m = I).
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For example, for the case of ex -0.5 ~ unloading ~ ex' = 1,81 = 0 and 82 = 'IT
and thus 8* = 'IT, and for the reversed case 8* = - 'IT.

In eqn (14), k might be thought to be another material constant in general. Here,
for simplicity and to avoid nuisance to add a new constant, we set it to be equal to
unity. That is,

k = 1. (18)

Of course, if needed in future, k may be treated as a material constant to fit the the­
oretical secondary FLDs more with the experimental data, if accuracy of the exper­
iment is improved and the data are accumulated.

The derivation of eqn (14) is understood as follows: (i) n(2) = n for Ea = 0, because
no unloading is involved. (ii) There is no reason to change the value of the hardening
exponent and thus n(2) = n for Ea = E~~, because the sheet breaks at E = Ea = E~~.

(iii) n(2) will deviate more from n for greater severity of strain-path change.
The characteristics of strain-hardening for deformation along the second propor­

tionalloading is expressed by the following equation by use of n(2) in eqn (13) or (14):

(19)

where E(2) = equivalent strain along the second strain-path only.
Next, the angle eo for the second loading is formulated in the following two man­

ners:

(i) eo = ('IT/2)

(ii) eo = ('IT/2)

(20)

(21)

where the value of p is chosen coincident with that of virgin material. (i) implies that
the pointed vertex develops with second deformation with the same rate as that in the
first deformation, whereas (ii) assumes that the vertex develops instantly at reyielding
to the angle at the end of first loading and then evolves with deformation in a similar
manner as along the first strain-path. For actual materials, the intermediate situation
between (i) and (ii) will appear. As far as the value of the virgin material is used, these
assumptions are unavoidable.

prop. FLO

K.S.

0.2-0.2
--r----r--....,.-------..,:-+---.---.---.--~E

0.4 2

(with unloading)

Fig. 7. Examples of theoretical secondary FLO for ex' = - 0.5 <:z 1.
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Numerical examples of the secondary FLO are given below. In the figures, KS
denotes the aluminium-killed steel sheet referred to previously.

Figure 7 illustrates the secondary FLO for the case of ex' = I ~ - 0.5 (prop.
FLO is also inserted). The numbers of the curves designate n(Z) and 8 0 used in cal­
culation according to the following:

I_n(Zl = n* 8 0 = 8 1 ,,
2_n(Z) = n*, 8 0 = 8 z,

3_n(Z) = n, 8 0 = 8 z,

4_n(Z) = n, 8 0 = 8 1 •

The curves 3 are straight lines. Actually, when n(Z) = nand 8 0 = 8 z are adopted, the
limiting equivalent strain E~;'> for the second strain-path is easily found to be

(22)

where E~?x = E~;'> for (Ea = 0) = the limiting equivalent strain of the virgin sheet when
it is deformed along the same path as the second one. According to eqn (22), when
E~V is greater than E~~x, the secondary FLO is coincident with the straight line which
passes the point at which the virgin sheet deformed along the same proportional loading
as the second path breaks, and the point corresponding to Ea = E~?x. In Fig. 7, this is
the lower one of the straight lines numbered by 3. On the other hand, when E~V is less
than E~~x, the secondary FLO is coincident with the straight line which passes the
point corresponding to E~;'> = E~~x - E~V on the second path starting from Ea = E~l!,

and the breakage point of the virgin sheet deformed along the same path as the second
one. In Fig. 7, this is the upper one of the straight lines numbered by 3.

The eqn (22) is coincident with the assumption used by Kikuma et a/.[IO) in cal­
culation of the secondary FLOs. Here it is a logical result for the case of n(Z) = nand
8 0 = 8 z.

All secondary FLOs in Fig. 7 agree at least qualitatively with those known so far.
However, when we refer to the experimental result illustrated in Fig. 6, we find that
the secondary FLOs numbered by I and 2 are better in a quantitative point of view.

(with unloading)

n(2)=

n[l +e"Ea(e:I~-EoJl

0.2

--K.S.
---Al-O
-"-Bs-J.H90 4

{
A: Tt/2 - P( E + Eo }2

B : Tt/2 - PE 2

--,.-----,----,----l'----,.....:....--,--....:...,.---,---.,- E2
o 0.2 0.4

a':

Fig. 8. Examples of theoretical secondary FLD for «' = - 0.5~ 1for three kinds ofcommercial
metal sheets.
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Killed Steel

• ~}Starting points for
second loading
after unloading

-0.6 0 -0.4

4

-0.2

0.6

0.2

a'
A : -1/2 ~ Various
8: 1 - a'

0.4

Fig. 9. Examples of theoretical secondary FLD for the case of Ct' '" 1 and -0.5 -> arbitrary
direction (KS).

a'

G)} ...... -1
CV 1- 0
G) --1/2•.... Starting points

for second loading
after unloading

Killed Steel £1

:-..
'/

-;, 0.6

........ .... ....

1 4 · 1 Various
IV • ---. a.....

-----,----.----r--.-----7
0
r--,----,--.----,-----. £2

- 0.4 -0.2 0.2 0.4

Fig. 10. Examples of theoretical secondary FLD for the case of Ct' 1 -> arbitrary direction
(KS).

0.4

,

Killed Steel

0.2-0.2-0.4

.....Starting points
for second loading
after unloading

~}O~-1;2
® --1

O
Various

1-3: - a'
--,----,--.----,---,c---:?f--,.---,---r--r--,.. £2

Fig. 11. Examples of theoretical secondary FLD for the case of Ct' '" 0 -> arbitrary direction
(KS).
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E:,

Killed Steel

0.2 0.4

/
a.'

CDt - 1
G:J(-t- 0
Ql) --1

1_4:_1_Various
2 a.'

---,----,---,.--r----,---*:.....--,.---,---,--...:;.---r-- E:2
-0.4 -0.2 0

Fig. 12. Examples of theoretical secondary FLD for the case of 0.' '" 0.5 ...... arbitrary direction
(KS).

That is to say, we can obtain the useful theoretical secondary FLDs in a practical sense
by adopting n(2) = n* and 8 0 = 8 1 or 8 2 •

Figure 8 illustrates the similar secondary FLDs of a soft aluminium (AI-O) and a
quarter-hardness brass (Bs-!H), where n(2) = n* and 8 0 = 8 1 or 8 2 are used. The
material constants are n = 0.266 and p = 0.693 for AI-O, and n = 0.280 and p = 0.563
for Bs-tH. In this figure, we see the similar feature of secondary FLDs for both metals
as that for KS.

Figure 9 shows another type of illustration of the secondary FLD in which the
sheet is deformed first along a straight strain-path, unloaded and then reloaded with
various 0:' to get the FLD. In this figure, two points A and B are adopted as the starting
state of the second loadings, where A and B are the points on the uniaxial tension (0:
= - 0.5) and on the equibiaxial tension (0: = 1). All the four types of choice of n(2)

and 8 0 are used, as in Fig. 7. The similar shapes of the secondary FLDs are seen for
these four choices, which are also similar to those reported by Chu[5]. In a quanitative
point of view, of course, they each show rather pronounced discrepancies.

Figures 10-15 ilustrate the examples of the secondary FLD which are obtained
by straining the sheet along the second strain-paths with various 0:' following particular

Aluminium-O

0.2 0.4

0.4

E,

0.6

-0.4 -0.2

•....-Starting points
for second loadi
after unloading

(1'

1 CD! --1
G:J 1- 0
Q) - -1/2

1 3 · 1 Various
'" . - 0./

--,-----,---,----,-----.--+--,----,---,.--..,.---.--E2o

Fig. 13. Examples of theoretical secondary FLD for the case of a' 1 ...... arbitrary direction
(AI-O).
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0.4

a'

Q)!- 1(1) 0--1/2
G) --1

1 3 · 0-Various
'V. ce

Aluminium-O

0.2-0.2-0.4

•..... Starting points
for second loading
after unloading

Fig. 14. Examples of theoretical secondary FLO for the case of 0.' = 0 -> arbitrary direction
(AI-D).

proportional loadings. Figures 10-12 are for KS, and Figs. 13-15 for AI-O, where n(2)
= n* and 8 0 = 8 2 are adopted. The broken curves with encircled numbers in each
figure are the secondary FLDs with respect to couples of a' inserted in the figure which
follow the same method of illustration as those in Figs. 7 and 8, and thus appear as
straight lines if n(2) = nand 8 0 = 8 2 are adopted.

In Fig. 10, we see that all the solid FLDs take their minimum points for second
strain-path of a' = O. The FLDs from reloading points 1 and 2 involve some range of
direction of reloading for which the sheet breaks almost immediately after or at the
instant of reyielding. When we pay attention to the broken FLDs numbered by ® and
@, we find that a portion of ® locates lower than @, which implies that the FLD for
a' = 1~ -0.5 is not necessarily the minimum forming limit diagram. Note that the
curve @ is the same one as the lower one of the curves numbered by 2 in Fig. 7.

In Figs. 11 and 12, we also see that all the solid FLDs take their minimum points
for second strain-path of a' = O. From a comparison of Fig. 11 and Fig. 12, we find
that the secondary FLDs for a' = - 0.5~ 1 and a' = 0~ 1 are the almost equivalent
maximum forming limit diagrams. Note that the curve CD in Fig. 12 is the same one of
the upper one of the curves numbered by 2 in Fig. 7.

Similar FLDs as those in Figs. 10-12 are obtained also for AI-O. Therefore it can
be said that the difference in the secondary FLDs due to material properties appears
qualitatively only.

E) Aluminium-O

'/
0.6

-JD "-
"- ~:/'/ "/ "/

/ , ~,
80 =82 /

/
.2

(1) -i-- 0/
G) --1

1~4·-1.._
Various

. 2 a/

0
E2

-0.4 -0.2 0.2 0.4

Fig. 15. Examples of theoretical secondary FLO for the case of 0.' = -0.5 -> arbitrary direction
(AI-D).
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5. CONCLUSIONS

The proposed constitutive equation is applied to prediction of the forming limit
diagrams (FLDs) of metal sheets subjected to nonproportionalloadings, in which the
localized necking condition due to StOren and Rice is used as the breakage condition.
Examples of limiting strain for arbitrarily curved strain-paths are given (Fig. 2), from
which we find that a slight deviation of the strain-path from a straight line causes a
rather pronounced change in the limiting strain, and that an appropriately chosen curved
strain-path gives a far greater limiting strain than that for the corresponding proportional
loading. The examples of FLDs are given for the case where the sheet is first deformed
along a straight strain-path and then along another straight stress- or strain-path with
an abrupt change of stress- or strain-path without intermediate unloading (Figs. 3-5).
The sheet might break very often almost immediately after or at the instant of the
stress- or strain-path change, in which the latter change gives more severe effect. The
examples of the secondary FLD (Le. FLD for the case where the sheet is deformed
along a straight-path, unloaded and then reloaded along another straight strain-path)
are also given by making use of appropriate assumptions on the strain-hardening ex­
ponent n(2) and 8 0 for the second loading path, (Figs. 7-15). From a comparison of the
theoretical curves with the experimental ones with respect to a kind of aluminium­
killed steel sheet, it is concluded that such theoretical prediction of the secondary FLDs
is very reliable for a practical use as well. The existence Bf~the maximum and minimum
forming limit diagrams is also verified. Finally, as for the limiting strains for nonpro­
portionalloadings and the secondary FLDs, much more accumulation of more reliable
and accurate experimental data is inevitably required in the future.
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